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m The optimization of stochastic systems with unknown parameters and

multiple decision-makers or controllers each having his own objective is
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considered. Based on a centralized information pattern, steady-state

solutions are obtained for the stochastic adaptive Nash game and Leader-

o
0.

Follower game problems. These adaptive solutions, after a judicious

transformation, resemble closely the implicit self-tuning solution for the

&®E>

single-controller single-objective case, and thus preserve the salient

PO

and advantageous features of self-tuning methods—simplicity and easy

%
:E- implementation. 1In addition, due to this close resemblance, convergence

2 E results for the game problems are established by extending the convergence
nd

A result from the single-controller single-objective case. The decentralized
= B

2
i

stochastic adaptive Nash game problem is also considered. Two explicit

[ <

& g self-tuning type algorithms are proposed. The first algorithm is an ad hoc
,j - constraint on the policy form while the second one is based on extension

% E} from static Nash game theory. Simulation results indicate all these self-
; Ej tuning methods are capable of stabilizing a system along targeted paths.
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‘g CHAPTER 1
g‘ !! INTRODUCTION
.
ﬁ' Ea Many systems we encounter in our daily routines have these dominant
&
% features: 1) unknown or partial knowledge of system dynamics; ii) presence
é g§ of multiple decision-makers or controllers each of whom has his different
x§ » objective; iii) presence of unmeasurable disturbances. Examples of such
ﬁif systems include distributed industrial systems, power and energy systems,
¥ Eﬁ transportation systems, environmental systems, biological systems and
jﬁ E? socio-economic systems, just to name a few., Optimization of such systems
% falls naturally into the framework of stochastic adaptive games.

E A dynamic game is a system characterized by the presence of multiple
g decision-makers. The theory of games first attained its formalism due
Ed

to the publication of the book "Theory of Games and Economic Behavior"

PR e

by [43]. A majority of the work for game theory has been done for systems

55

with known parameters [20, 21]. 1In this thesis, we propose an adaptive ..

procedure to tackle the game problem when we have no information or just

A b

e

partial knowledge of the system parameters. This particular adaptive

55 B

algorithm, which incorporates a minimum variance control strategy and a

least squares identification scheme, is the Self-Tuning Strategy [1, 5,

B gL
X

45]. The reason for using the Self-Tuning Strategy in tackling the

Stochastic Adaptive Game problem is primarily due to the simplicity of

the algorithm and proven success in industrial applications [2, 6].
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1.2 Self-Tuning Strategy
The Self-Tuning Strategy is basically a suboptimal control scheme
because the design of the control signal does not take into consideration
the effect of the control signal on the estimation of the system dynamics.
;‘ In the design of stochastic adaptive controllers, the role of the control
{?:é signal is two-fold: 1) the attainment of the control objective; ii) the
‘éi% identification of the system parameters or dynamics {4, 8, 9, 56]. This
 ;§$ dual nature of the control signal was first pointed out in [22].
i'ié Controllers which take into account of the dual nature of the control
:?i‘ system are classified as dual controllers. By this definition, the Self-
é?é Tuning Strategy is a non-dual type algorithm because it approaches the
?;é estimation problem and control problem independently and assumes no
oY interaction exists between the two problems. Even though the Self-Tuning
“%;é Strategy is a non-dual adaptive control method, it has received wide
’gﬁé attention and generated a substantial amount of results on both the
%ﬁf theoretical level and practical applications primarily due to its
Jgi; simplicity and ease of implementation. The advent of microprocessor,
,égg with its falling cost and rising computing power, has allowed a prototype
v 2 portable self-tuner to be constructed and tested on site for various
»ﬁi industrial processes [19]. These self-tuners are particularly appealing
.?% under the following situations:
;» i) frequent manual retuning needed for the traditional three
25% term PID (Proportional, Integral, Derivative) control scheme;
5S5 i1) frequent changes in set point for linearized system dynamics; ;
?;ﬁ ii1) presence of noise in the system; |
”,
‘%é iv) presence of slowly ~ime-varying system parameters,
N
o
P

T v, AN 0NN L L L
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We hope che proven applications of the self-tuner will provide us

{

? !B with a practical tool for solving the stochastic adaptive game problem
A
3& 2 and ultimately enable us to implement, with ease, the theory of games to
NI
,3% b the numerous systems we encounter daily,

1.3 Thesis Outline

In this thesis, we will utilize the self-tuning method to solve the

R stochastic adaptive Nash game and Stackelberg game problems. Our

lg; S objective is to seek steady state game solutions that can be practically

-i; E; implemented with ease. 1Indeed, by restricting the cost functions of

ﬁi? - each decision-maker to a certain class, we obtain solutions for the game
:gi é;: problem, which resembles closely, after certain transformation, the

ﬁgé ) solution of the self-tuning control problem with only one decision-maker.

“zé This close resemblance implies that the computation for the game solution
E% E% can be carried out using similar methods that are used for the self-tuners.
:% ) Microprocessor implementation, naturally, is a desirable goal.

i}i g? Since our approach is based on the self-tuning principle, we will
,gg EE briefly review the various aspects of this theory in Chapter 2. We will
‘ff ~ concentrate on the original self-tuning regulator [6] and a generalized
3: Ez self-tuning method proposed in [16, 17]. Extension and new convergence
%}E ?_ result for the method in [16, 17] are also presented in this chapter.

fﬁ 52 In Chapters 3 and 4, we will define and formulate the stochastic

'ﬁs ;; adaptive Nash game and Stackelberg game problems respectively. We will
‘%; = assume a centralized information pattern, that is, the game problems will
}? E§ be solved with the assumption that every decision-maker has the same

RO
SRR RN

A &
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input-output data about the syatem. Convergence for the game problem

will be shown by extending the convergence results of the self-tuning

‘1

s

L ¥

L

£

controller with one decision-maker.

o
el
225N %

o >

In Chapter 5, decentralized stochastic adaptive Nash games will be
y considered, Specifically, we will consider a "one-step-delay information
P sharing pattern". By restricting the cost functions for the decision-
makers to single-stage, an adaptive games solution is obtained by
o extending the results of static games with known parameters. We also
St obtain similar adaptive solution by a straightforward constraint on the

o form of each decision-maker's control law. Simulation results using

these procedures are presented.
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PN CHAPTER 2

""-_::: E SELF-TUNING PRINCIPLE

R

X R

DTN 2.1 Introduction

e EE In order to control processes where there are unknown parameters and
'Ir": i

!:53 o unmeasurable disturbances, the self-tuning method has been proposed to
EE

overcome these problems. In this chapter, we will review the underlying

p f; idea of self-tuning for the single decision-maker single criterion case.
S
& New convergence result and extension are also presented.

XN

ot S In Section 2.2, the Self-Tuning Regulator (STR) of [5] will be

reviewed. The STR basically combines a minimum variance control law and

o

,
1
T
.

o

a least squares estimator to deal with the unknown parameter and noisy

Lo system, A variation of the STR, the Self-Tuning Controller (STC) in
g: {16, 17, 18, 25, 26], will be reviewed and extended in Section 2.3.
:'i.-g Ed Properties of these controllers are discussed.
™ p In Section 2.4, convergence results for the STR will be presented
““ ! and we will show how the convergence results for the STR can be carried
\__ E: over to the STC. A remark that is worth mentioning at this point is that
:“ a similar procedure will be used in obtaining convergence results for the
:_ t game problems, In other words, we will show how the convergence results
:i s for the STR can be carried over to the Nash game and Stackelberg problems.
g Finally, in Section 2.5, an example based on a paper making machine
:’ E,' in [14] 1s simulated using the two different self-tuners.
e
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2.2 Self-Tuning Regulator (STR)

The process to be regulated is formuated in an input-output model
form. The objective of the control action is to minimize the output
variances of the process. To review the STR concept, we will first
present the minimum variance strategy for the system assuming complete
knowledge of the system parameters. Then, the adaptive minimum variance
control law to deal with unknown system parameters is presented. Further
details can be found in (6, 14].

2.2.1 Minimum Variance Strategy

The process to be controlled is governed by

A@ Hyce) = Bg Hu(t-k-1) + c(q He(t) , k>0 2.1

where q "t

denotes the backward shift operator, k is time delay, y is the
output vector, u is the input vector, and [e(t)} is a sequence of in-
dependent, identically distributed random vectors with zero mean and finite

covariance. The vectors y, u, and e are all the same dimension p. The

polynomial matrices A(z), B(z), and C(z) are all of dimension p X p

given by
AZ) =T +Az+ ...+ Anzn , (2.2a)
B(z) = BO + Blz + ...+ Bn_]_zn.1 , Bo non-singular (2.2b)
C(z) =I+Cz+...Cz2" , (2.2¢)

with det B(z) and det C(z) all have their zeros strictly outside the unit

circle.
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The objective of the control action is to minimize, given the input-
output data up to time t, with respect to u(t), a cost function J given

by

7 = E{yT(t+k+1)Qy (t+k+1) } 2.3)

where E denotes the expectation operation and Q is a p X p symmetric
positive semidefinite matrix. The minimum variance strategy minimizes J
over all admissible controls u(t), specifically, all u(t) which consists
of functions of all current and past outputs y(t),y(t-1l),... and past
inputs u(t-1l),u(t-2),... .

It can be shown that the minimum variance strategy is given by

ca Hy(e) + Fea HyB@ Huce) = o (2.4)

where E(z) and a(z) satisfy

C(z) = A(z)F(z) + z2°T16(2) (2.5a)
F(z)G(z) = G(z)F(z) (2.5b)
det F(z) = det F(z), F(0) = I (2.5¢)

and F(z), G(z) are polynomial matrices given by

k

F(z) =1 +F.z+ ... + sz (2.6a)

1

n-1
G(z) = Gy + G2 + e, + Gn-lz . (2.6b)

Derivation of the minimum variance strategy can be found in [14].

The closed loop system with this strategy being applied becomes

ca” Hyce) = @ Hr@ Hece) 2.7)

-------------
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N
oo where

N F(z)c(z) = C(2)F(2) . (2.8)
N

<3 - -
‘3 Since det F(z) = det F(z), det C(z) = det C(z). Thus, the closed loop
‘ system is stable as det C(z) is assumed to have all zeros strictly out-
side the unit circle.
'S:- The control error with this strategy is asymptotically given by
i "" -1

s y(t) = F(q e(t) (2.9)
&

f;: which is a moving average of order k of the noise e(t).
. 2.2,2 Regulator for System with Unknown Parameters

% L2

In order to control the process given by (2.1) with unknown para-
J- meters, the following model is used for representation of the process
y(t) + Aq Ny (t-k-1) = Kq Hu(t-k-1) + e(t) (2.10)
, vhere
. n-1

o Az) =Gy + Qyz + ... +d ;2 (2.11a)
,‘ .
\ - ot+k-1 2.1

E Bz) =By + Bz + ...+ B, 2z (2.11b)
AN

and e€(t) is the error to be minimized in the least squares sense.

.\

A The minimum variance strategy for the process (2.10) is given by
2
N -1 -1

' B(q u(t) = A(q Hy(t) . (2.12)
',;: For the STR, at each instance of time, it performs a least squares
_:j:: estimation for the model given by (2.10). The estimates &(z) and E(z)
‘ for d(z) and 5(z) respectively are then substituted into (2.12) to obtain
-'.';
A
2y

.,b'
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the optimal control u(t). The certainty equivalence principle is invoked
during the control calculation procedure as we have assumed the optimal

control signal can be obtained even with the estimates substituting the

true parameters. That is, we have assumed

. R
t &q Huce) = aq Hy (e (2.13)
;:i 2
ot L will yield the same optimal control as (2.4).
fsg = In the adaptive control literature, this method is classified as an
;E% 2 implicit method or direct method since ;he parameters of the system are
f:% ?E not estimated explicitly (thus implicit method) and that the parameters
tg; for the regulator are estimated directly (thus direct method). If an

explicit estimation of the system parameters is being done, that is, the

estimates ﬁ(z), ﬁ(z), and a(z) are obtained for the process (2.1), poly-

A

A
i~y
T

ol nomial matrix factorizations and computations will have to be carried
-

S kq out before arriving at the optimal control signal u(t). The direct

h - method here allows simpler and faster computations for the optimal control.

o |

To estimate the parameters of the regulator recursively, the

x

.
RIS

following least squares procedure may be used [3, 6]. 1Introduce the para-

T

b meter matrix @ given by

™ [ 7
::‘: Y %

o :

tﬁ - L)

> a .

N ©@=[0, 0,0, ... 8] = "Tn-1 (2.14)
CN 17273 P

g - 3

= .

o;_' t
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The following recursions are carried out at each step of time to estimate

® for { = 1,2,...,p:

9, (t) = 8, (t-1) + R(t-1)[y, (t) - M (£-k-1)8, (t-1)] (2.15)

K(t-1) = P(t-1)T (t-k-1)[1 + T(t-k-1)P(e-1)T (t-k-1)]"* (2.16)

P(t) = P(t-1) - R(t-1)[1 + T(t-k-1)P(t-1)NT(-k-1) K (t-1) (2.17)
with y, being the i-th component of y and

T(t-k-1) = [-yT(t-k-1) ...-yT(t-k-l-na)uT(t-k-l) ... uT(t-k-l-nEp]
(2.18)

where n, = n-1 and ng = n+k-1. It can be observed that if the initial
values of P(t) is the same for all of the p steps of the estimation at
each step of time, the corresponding gain matrix K(t) will remain constant
at each step of time for all of the parameter vectors Bi (i1=1,2,...,p).
In this manner, considerable computational efforts can be saved. Another
remark is that other types of least squares estimation schemes may also
be used to deal with slowly-varying parameters or to enhance numerical
stability of the estimation computations.

Results for convergence of this adaptive algorithm have been reported
{27, 28, 38, 39]. 1n [38, 39], convergence of optimal control, based on
convergence of estimates, i3 guaranteed for single input single output
system if the system input-output remains bounded and if a certain positive
real condition of the noise dynamic c(2z) is satisfied. In [27, 28], the
boundedness of the system variable is removed. Further discussion will

be presented in Section 2.4, What should be kept in mind at this point
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is that these convergence results developed for the STR will be used to
determine convergence, first of the self-tuning controller (STC) which
is presented in the next section, and eventually the stochastic adaptive

game problems,

2.3 Self-Tuning Controller (STC)

The single input single output STC in [17] is basically the same as
the STR except for a penalty on the control signal in the cost function,
The presence of a penalty may reduce the excessive control signal
magnitude that is common for the STR. It may also offer a simpler method
to deal with nonminimum phase processes [25, 29]. We will generalize the
single input single output (SISO) case to multiple input multiple output
(MIMO) case here. See also [33] for another approach.

The cost function for the STC is given by
7 = E{yT (t++l)Qy(t+ktl) + ul(E)Ru(t) } (2.19)

where Q is a symmetric positive semidefinite matrix and R is a symmetric

positive definite matrix.
To facilitate our analysis in the latter part of the report, we will

consider the process under consideration to be governed by

a@@ Dy(e) = B(q Hu(e-k-1) + c(a”He(r) (2.20)

where k is known time delay and a(z) is a scalar polynomial and B(z),

C(z) are polynomial matrices given by

2+ ...+ anzn (2.21a)

a(z) =1 4+ a,
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i 12
:: m-1l
B(z) Bo + Blz + ... + Bm-lz (2.21b)
End

5N Cx) =L +Cz+... +cgal, (2.21c)
&

S and C(z) has all its zeros outside the unit circle. The process given by
it (2.1) can readily be converted to (2.20) as shown in Appendix A.

(!“;‘

\?_...

:3-‘- 2.3.1 Controller Design with Known Parameters

o

o We will, again, first consider the system with known parameters and
5

o derive a strategy that minimizes (2.19) and then the adaptive algorithm
X~
. :'.1 for unkncwm parameters will be presented in the next section.
3
o § Theorem 2.1, The control law that minimizes (2.19) for the system
3% (2.20) satisfies

t0

"‘) 1 1 1 1 1 1
‘>’: - - - - - - -

b MG(q )C(q y(t) + [MF(q HC(q )B(qQ ) + c(q HH]u(t) = 0 (2.22)
f:' where

X

23 M =Bl (2.23a)
w3 o )

e H=R (2.23b)
N

7 C(z) = adjoint C(z) (2.23¢)
- c(z) = det C(2) (2.234d)
S

A G(z) = Gy + Gz + ... +G__ 2" (2.23e)
N

RN F(z) =1+ Fz+ ... Fz* (2.23£)
B .

AHN and G(z), F(z) satisfies

X

e

2 C(2) = a(2)F(2) + 2T 06(z) . (2.24)
X3

e

X




Proof. Premultiply (2.20) by z

Using (2.24), the above equation becomes

where the fact Z(z)I = C(z)C(z) has been used. Denote

that is, y* is the least squares optimal predictor of y given the data
up to time t, which 18 uncorrelated with F(q'l)e(c+k+1). Combining

(2.25) and (2.26) yields

oy

B

[T

Substituting (2.26) into the cost function (2.19) yields

&3

3

%o
e

Y
Y ———
i

TEARNS

'
‘b

,
L

-

3

-
-~

0%
l':
e

3 e B e Vq W W I, W a VT LV T - = m T a Tm T e T -
A SR I O I S A R A L N

k+1F(z)C»(z) to obtain

F(a~Heq Haa Dy ey = Fq"hHeg B Huce)

+ F(q'l)C(q'l)e(:+k+1) )

teta™ - ¢ ®* g g Yy e Yy ety

= F(a heg™Hea Hue) + Fia"Heg Heq e ktl)

E(q'l)[y(t+k+1) - p(q'l)e(c+k+1)]

= 6(a”Hea by ) + Fea He e Huce) (2.25)

¥ (tHerl |t) = y(tHetl) - F(Q™D)e(tHerl) ©(2.26)

2@ hHy s o) = a@ Hea Hyce

+ 7@ He e Hue . (2.27)
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g -1 T -1

hae J = E{[F(q e(t++1) JQ[F(q ")e(t+k+1)]}

i

e

s *T * I

3 + E{[y" (t+k+1|t)Qy (t+k+l|t) + u (t)Ru(t)} . (2.28)

i

"y The first term of (2.28) is related to future noise covariance which

;7':-: cannot be optimized. Hence, the optimization is concentrated on the

’-3‘,

h second term. Assuming the existence of %;Ix_('i:T » the necessary condition

o

e for a minimum yields

:-"

._55: QJ—— = 0

oy du(t)

e = Bng*(:+k+1 le) + RTu(t)

o or

v, .

7 0 = My" (t+k+1|t) + Hu(t) . (2.29)

",:‘_ Premultiply (2.29) by Z(q-l) and combining the resulting equation with

:: (2.27), we have

i em,

- -1y, -1 Ly, Lo, =1, , = -1
| MG(q )C(q y(t) + [MF(q )C(q )B(q 7) + c(q HHIu(t) =0

;}j as stated in (2.22). Q.E.D.

-3

2

Do A remark that is noteworthy is that in the STR where there {s an

}::, absence of penalty on control, the optimal control is obtained by setting
o

-

',;3 the predictor y* to zero. This setting of the least squares optimal
> predictor to zero to compute the optimal control is the underlying factor

L9

f that enables the parameters for the STR to be directly estimated in the
M

},‘ adaptive situation. 1t will be most convenient if a similar direct method

can be used for the STC. To accomplish this ultimate goal, we continue
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3\, our analysis on the optimal control equation (2.22) for known parameters

to see if a suitable optimal least squares predictor function can be

A2
3¢
»
'
.

o obtained.
?% X Define a function ¢* such that
X E * *
b @ (t+k+l |t) = My (t+k+l|t) + Hu(t) (2.30)
e iﬁ where M and H are as defined in Theorem 2.1. From (2.29), the optimal
: . control is obtained by setting ¢* to zero; thus, ¢* seems to be a possible
5; £ candidate for the predictor function.
X
;; % Let the function ¢ be defined by
>
& E P(t+k+l) = My(t+k+l) + Hu(t) . (2.31)
a
= ii Equations (2.20), (2.27), (2.30) and (2.31) yields the following system:
S -1 -1 -1
g a(q )e(t) = (MB(q ) + Ha(q ))u(t-k-1)
",-.‘ L.l:
Wy b
S -1
N + MC(qQ e(t) (2.32)
" 0 =, -l lop -
R @ He (et ey = me(a He Hyee)
:
A -1 -1 - -, =1
2 + D@ e HBE™ + Ta HElu) (2.33)
> * -1
2 H P(t+k+l) = ¢ (t+k+l|t) + MF(q )e(t+k+l) (2.34)
’ * -
:; .3 since y (t+k+1|t) is uncorrelated with F(q 1)e(t+k+1); thus, ¢*(t+k+11t)
'S and MF(q'l)e(t+k+1) are also uncorrelated, which implies ¢* is the least
o L
5 R? squares optimal predictor for ¢. Furthermore if we define a new cost
y e
" function I given by
e ii T
5 I = E{@ (t+k+1)p(t+ktl) } (2.35)
g e
¢

? I

Lar
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PN then the minimum variance strategy for the system governed by (2.32) with
i
oy cost function (2.35) is obtained by setting the optimal predictor ¢* to
:‘.',é:;
.. Zero.
K,
i To summarize, the original system given by
i -1 -1 -1
o a(q y(t) = B(q Hu(t-k-1) + C(q e(r)
‘7-;..'
4
o,

? 2@ hHy e+ |t) = ag”Hea Hye) + riahHe e Huce)

y(tHeH) = y¥(e+etl |6) - F(q l)e(t+erl)

- has been transformed to an equivalent system

i% a@ hHo) = aB(a™Y) + Ba@ H)u(e-k-1) + Mo(q He(t)
S(a by g" (e &) = ma(a HHea My (e

g% ¢ b o™ + 2@k
o

B(t+k+l) = ¢ (tHeHL |t) - MF(qQ™1)e(t+e+l)

;fﬁ with

B @(t) = My(t) + Hu(t-k-1) .

%j An additional advantage to be gained in transforming the original
2:: system into a system which is similar to a STR structure is the

.:,'._f

; possibility of applying directly the convergence results for the STR to
R
;Lg the STC. In the latter part of the report, our convergence analysis for
S

the game problem will also be based on this approach of transforming the

s

Pl e

original game problem to a system governed by (2.32-2.34).
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o, The closed-loop system with (2.22) being applied becomes

2@ o+ a@ b )y

PR - -1 -1 -1, -1, -1

by =c(q H(MF(qQ 7) +HB "(q )C(qQ ))e(t) . (2.36)
. =

E i Since E(z) is assumed to have all its roots outside the unit circle, the
'3 [é stability of the system is thus dependent on the roots of the system
Y
\

‘\.‘- Q’:: det(MB(z) + Ha(z)) = 0 . (2.37)
TE t3
3 Hence by choosing M and/or H properly, the system can be stabilized even
-
. ﬁ; with a B(z) that does not have all its zeros outside the unit disc.
S f? 2.3.2 Controller for System with Unknown Parameters
’é - In order to control the process given by (2.20) with unknown para-
i ‘! meters, the following model is used for representation of the system
o
2N -1 -1
AR ¢(t) + d(q Hy(t-k-1) = 5(q Hu(t-k-1) + e(t) (2.38)
D
!ﬂ where ¢ is defined in (2.31) and

:‘ [

- n-1

. d(z) = db + d&z + ...+ a;_lz

- B(z) = By + Bz + ...+ Bm_,_k_lz“""k'1

i i

. and ¢(t) is the error to be minimized in the least squares sense.

2 Lﬁ The certainty equivalent minimum variance control law for (2.38) is
‘§ < given by

YERY,

o s =1 s, =1

Y B(q Mu(t) = d(q ")y(t) (2.39)
h |

e

4 AL':\
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: where .‘é(z) and a(z) denote the least squares estimates for /5(z) and
_f d(z) respectively.
;‘E‘:,. The following recursive estimation scheme may be used (27, 28].
'5'"3 Introduce a parameter matrix ® as defined in (2.14). Then at each step
' of time, the following recursions with k = 0 are carried out to estimate
@ for 1 = 1,2,...,p:
2% 0(6) = 8,t=1) + Ty (e IA () - my (£-1)g(e-1)] (2.40)
” T (e-1) = £ (t-2) + N (e-1)T, (e-1) , £,(0) = 1 (2.41)
.
- vhere T, is given by
\J T(t) = [-yT(t) ...y (emmt)ul(e) ... T (-mi1)] (2.42)
' and 2 > 0 is a constant. See [27] for general delay k # O.
f‘ Using ¢ as the input to the controller, it is possible to avoid some
L of the complex matrix calculations and determine the controller parameters
,: directly. However, this may present some problem since knowledge of the
': Bo parameter is required in computing the signal ¢. In the present case
: for a single decision-maker, this may not be extremely annoying since an
:: arbitrary choice for the matrix M results only in a change of the penalty
EE on the output variances. Certainly, one method to overcome the problem
N

‘ is to estimate the system parameters explicitly and go through all the
',' matrix computations. We will, however, at this point assume that the BC
:i.; parameter in the process is known as this does not appear to be a very
stringent requirement in practical applications.
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It should be noted that similar derivation of the self-tuning

o !! controller strategy is carried out in [33] using different system
,§§ o representations. However, in our approach, by adhering to the system
: % he representation (2.20), convergence and stability results in [27] can be
> 5& readily established for the STC as shown in the next section.
S
;;i i 2.4 Convergence Analysis for Self-Tuning
Y o It has been shown in [38, 39] for the SISO STR that the estimated
EE% Zﬁ parameters of the regulator will converge and yield the optimal control
N Eﬁ based on true system parameters if the following conditions are satisfied:
5 1) the sequences {y(t)}, {u(t)} are uniformly hounded;
é&; 'ﬁ? ii) the polynomial 6——l:T- - %) is strictly positive real; and
S c(q )
: ‘! iii) there is no factor common to A(z), B(z) and C(z) in (2.1).
i% @ Similar analysis for the MIMO case has been reported in [14].
;. - In another approach using Martingale theory in [27], convergence of
o E§ parameters is not explicitly required and the boundedness of the system
;} b input-output is removed. Their result is stated in the following theorem.
e
2 Theorem 2.2 (27, Theorem 5.1]. Consider the cost function (2.3)
Eg {E and the system (2.20) which satisfies the following assumptions:
?E . i) the number of inputs p equals the number of outputs;
' Li i1) the delay k = 0;
E? E; i11) upper bounds for the orders of the scalar polynomials appearing
- >: in {a(q”hy, B(q'l), C(q-l)} are known;
i
i
ot 1§ Ao SRt e A

7 W S W,
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2

YW iv) det B(2) # 0 2| <1
det C(z) #0  |z| <1 ;

i -

Y -

'*-_“ v) (c(z) - %) is strictly positive real,

= then with probability one,

R N

g 1 2

N 1) swpy Tyl <o

1 N 1

_\3'

ok N

2 @ swi zluwf<e
b

a3 1 N 2

MY - = =

2 () lagy fE{yl(c)} Tyy » 1= 1,2,...,p
oL
o where 1"11 is the minimum mean square error for any causal linear feedback
(including the one designed using true system parameters), if the STR
algorithm in Section (2.2.2) is applied to the system.
e Notice the presence of a, which is present in (2.40), allows a

;E, certain degree of freedom to ensure condition v) is satisfied.

LN .

_,:f:zj The result of Theorem 2.2 will be applied to the equivalent trans-
. formed system when the STC algorithm is used. Hence, the process will be
';,: governed by (2.32) with the cost function (2.35). By modifying certain
-l

" e

:S'::j assumptions on the system, we see that the input-output will remain

_ ‘ bounded and the control error of the transformed system will achieve its
.-. global minimum. Hence, we have the following theorem.

N3

- Theorem 2.3. Consider the cost function (2.19) and the transformed
;’Q: system (2.32) which satisfies assumptions i), ii), v) of Theorem 2.2 and
'L"j
’;_E: the following conditions:

>

e i1i) upper bounds for the order of the scalar polynomials appearing
S -1 -1 -1 -1

o in {a(q "), MB(q ) + Ha(q ), C(q )} are known;
X
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det C(z) # 0,

vi) Bo

is known.
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lz2| <1

lz| <1

If the STC algorithm in Section 2,3.2 is applied to the system, then

the input-output will remain bounded and the output error of ¢(t) will

achieve a minimum achievable by any causal linear feedback.

Theorem 2.3 will be used in showing convergence of the game problems

that is considered in the latter part of the report.

2.5 Simulation Example

To illustrate some of the features of the STR and STC, an example

based on a paper making machine is simulated and evaluated.

for details of the model.

The plant is governed by

y(t) + Ay(c-1) = Bu(t-1) + e(t)

where

E{e(t)e’(t)} =

-
-0.99101

-0.80610

0.89889

19.390

-

0.02

0.35

8.80512

-0.77089

-4.59328

0.88052

0.35

7.6

See [14]
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ff The cost function J is given by
{
o T T
Ee J = E{y (t+1)Qy(t+l) + u (t)Ru(t)}
N with
5 6 0
Q-
x 0 10
~
. 0 , for the STR
o o
0.05 0 for the STC
n:. 0 0005 ] .
'Y
\ All initial parameters except BO are set to zero. EO is set to the
- identity matrix to prevent control saturation.
e
‘- Self-Tuning Regulator: The STR algorithm estimates recursively the
:: parameters of the model
:f
‘ y(t) + oy (t-1) = Fu(c-1) + e(t) ,
3
and the control is given by
u(t) = Ba doy(t) .
y
o
o) The input-output of a typical run will be presented and discussed later.
X Self-Tuning Controller: The STC algorithm estimates recursively the
-: parameters of the model
#
i B(t) + Goy(t-1) = Byu(t-1) + e(t) ,
{
4 and the control is given by |
;: |
w4
o
¢

‘4
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bbbl Boiidmm iy ol FRNER NI A O LS

R e
.........




i i ‘ o S Attt e =i Ll e e L AR L N S .
WA I S PSP ST S AT I I A T N IR S I e R TS i L B S L R R 4 R AR A L

Yot

RS
i

.
}% o 23
;M

34 u(t) = BO aoY(t) .

éi . The input to the controller ¢(t) is given by

Sl

SER B(t) = y(t) + M lHu(t-1)

n
Ei with M = BgQ, Ha= RT. Notice since M-l exists in this case, our operation

Z? Eg in premultiplying (2.31) by M"1 is justified. Such transformation of ¢

;: = will not affect the stabilizing property of the algorithm.

i§ E; Comparisons of STR and STC: In order to compare the different

i; i features of the two self-tuners, we have carried out the simulation in

:; . two parts. We will first assume Bo is knowm, thus Eb and M are known.

? E? The input-output of a typical run is shown in Figures 2.la-2.4a for the

;é ;; STR and the corresponding trajectories for the STC are shown in

s ‘l Figures 2.1b-2.4b, 1In the second part, Bo is unknown and M is

~§ 53 arbitrarily chosen as the identity matrix for the STC. The input-output

; < of a typical run (with other conditions the same as the first part) is

g !? shown in Figures 2.5a-2.8a for the STR and the corresponding trajectories
g - for the STC is shown in Figures 2.5b-2.8b.

:E ¥2 The simulatfon results indicate that both self-tuners indeed perform
3 E? satisfactorily regardless of the knowledge of By. However, from Figure 2.3
= and Figure 2.4, we notice that Yy and u, are substantially reduced

%E E; especially during start up if the STC is used. The prevention of

A . excessive control action is attained in this instance. From Figures 2.5-
% %ﬁ 2,8, it can be observed again the reduction of excessive control and thus
t; £ excessive output variance is achieved even with unknown Bo. The STC does
i; tf seem to have an edge in terms of smoother control action. However, we !
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N |
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should take caution not to penalize the control signal excessively as
this may result in inadequate probing of the system to yield estimates

that can stabilize the system.
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CHAPTER 3

STOCHASTIU ADAPTIVE NASH GAMES
3.1 Introduction

In this chapter we will consider the stochastic adaptive Nash game
problem using the self-tuning controller (STC) approach. Nash games were
first introduced and investigated in a static framework in [42]. They
were later extended to the dymamic case (53, 54)]. The decision-makers in
a Nash game simultaneously minimize their respective cost functions with
respect to their individual controls. The resulting optimal strategy is
called the Nash equilibrium strategy. This strategy has the property
that if one decision-maker deviates from it, he cannot improve his per-
formance. However, it may be possible for some or all of the decision-

makers to improve their performance when more than one decision-maker

deviates from the equilibrium strategy. That is, the Nash equilibrium

strategy is secure against unilateral deviation but not necessarily
collusion, The Nash game framework, thus, is very appealing to large
scale systems or distributed industrial systems where there are a host of
noncooperative decision-makers or controllers each trying to minimize his

owmn cost functional.

Definition 3.1. A strategy set {u:,u;,...,u;} is a Nash equilibrium

strategy set if

* * * % %*
Ji(ul’ono,ui-lgui,u1+1,| . o,t‘N
(3.1)

* * * *
< Ji(ul,...,ui_l,ui,u1+1,...,uN) , 1=1,2,...,N

T e R L I
e et Tt Tt e e lI-,I i..-

.........
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f% for all admissible controls uy of decision-maker i; and J1 is the cost
N function for decision-maker i1 for which that decision-maker is trying to
,33 minimize.
o
As in stochastic optimal control problems, there are different
}%? solution concepts, namely, open-loop and closed-loop solutions, to the
§§ Nash game problem [53]. In general, the open-loop and closed-loop
;' solution of a game problem is different. However, by restricting the cost
ié function of the decision-maker to single-stage, the distinction between
gi the different types of solution cease to exist as we have essentially
;; reduced the problem to a static framework. Moreover, the restriction also
jég enables us to seek steady state solutions to the game problem using the
;g‘ self-tuning approach.
3: In Section 3.2, formulation of the Nash game problem is presented.
%g The solution to the stochastic adaptive Nash game problem will be dis-
E; cussed in Section 3.3. It turns out that the game solution closely
:: resembles, after a judicious transformation, a minimum variance control
¢§E problem with one decision-maker. It is this resemblance that enables the
o
-ﬁ established results for the STR to be applied to the game problem.
;\ Finally, in Section 3.4, a simulation study on an economic system is
ég presented to illustrate the proposed adaptive solution. ‘
’ 3.2 Problem Formulation
?; Previously, dynamic games have mostly been analyzed for system in
~§5 state-space representation. We will formulate the game problem in the
'1 input-output form so that the self-tuning algorithm can readily be applied.

,1 Consider a system given by the equations
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x(t+l) = Fx(t) + Glul(t) + Gyuy(t) + ... + Gyuy(t)
+ Ke(t) (3.2)

= y(t) = Tx(t) + e(t) (3.3)

P where each Uy, which is of dimension m,, represents a controller that

tries to minimize a cost function given by

3, = E{ly(cHetl) - y"(t+er1) 17Q [y (tokel) - y¥ (i) )

o
+ [ue) - ue-DIR ) - w(e-113, (3.4
is

i=12,...,N
B where Qi is a symmetric positive semidefinite matrix and yr is the
i! desired value of y. The matrix Ri is a symmetric matrix with its {,i-th
S: block, denoted by (Ri)ii’ being positive definite. The vector u is
Ei formed by stacking all the ui's (1 =1,2,...,N) in a column. The reason
l? for penalizing the term [u(t) - u(t-1)] is to avoid finding the reference
g control signal u® that corresponds to a nonzero yr. The state vector
E% x(t) is n-dimensional. The input u(t), output y(t) and the noise sequence
‘i [e(t)} are all of dimension p (that is, p = igi mi). Furthermore,
E; {e(t)} is assumed to be an independent equally distributed zero mean
e random vector with finite covariance. Let G = [Glfczg...jcn], then (3.2)
= becomes '
3
o x(t+l) = Fx(t) + Gu(t) + Ke(t) . (3.5)

It can be shown that (3.5) and (3.3) can be transformed to an input-

output representation {27], which is given by
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izt . -1 -1 -1 S
i a(q )y(t) = B(q Du(t-k-1) + C(q e(t) , k>0 (3.6)
f; where k is a known time delay and a(z) is the scalar characteristic poly-
jl nomial for the system (3.5) and a(z), B(2), C(z) are in the form as given
L in (2.21).
E
Sff To allow more flexibility, we will consider the system to be
f*k governed by
E>J
N -1 -1 -1
2o a(q y(t) = B(q Hu(t-k-1) + C(q e(t) + D 3.7
:f:. where D is a p~dimensional offset vector.
<
e 3.3 Self-Tuning Nagh Game
£l
The self-tuning approach is adopted to seek steady state solutions
i:f for the stochastic adaptive Nash game problem. As in the usual analysis
{3, for such an approach, the control strategy is first derived assuming all
the parameters are known, then an adaptive procedure is incorporated to
2:? deal with unknown parameters.
g 3.3.1 N-Person Nash Equilibrium Strategy
o
- The derivation of the Nash equilibrium strategy is very similar to
Etf that of the STC. We will summarize the result in a theorem.
i
i?ﬁ Theorem 3.1. Let L<i) represent the i-th column block (of dimension
oo p X mi) of the p X p matrix L. The Nash Equilibrium Strategy u*(t) for
;ﬁj the system (3.7) with cost functions (3.4) is given by
Ay
1
;,:.:
K
.ﬁ -'.
Loy
- .;
—
<

3
& & &
R
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M6(q" Heka Hye) + P Hewa Hrh

+ 1-a"Ha Hak® ) + @ He o

- S(a hHMy" (t+#l) = 0
with

C(z) = adjoint C(zj

c(z) = det C(z)
G(z) = Gy + 6z + ... + Gn_lzn.1
F(z) =1 + Flz + ... + szk
Ty ]
(1)
By '
M= .
T
(N)
B Q
Lo ]
F'T-
¢H)
Ry
H= :
T
¢)]
Ry

and G(z), F(2) satisfy the following identity

C(z) = a(z)F(z) + z57i6(z) .

Proof. See Appendix B.

(3.8)

(3.9a)

(3.9b)

(3.9¢)

(3.94d)

(3.9e)

(3.9%)

(3.98)

Notice that (3.8) is just a aystem of linear equations, which is

extremely convenient in the computational aspects over other game solutions
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L that usually involves Riccati equations. Another observation of (3.8) is
l :
kot that it closely resembles the optimal control law for the STC given in
.}'_:.;

g;;; Theorem 2.1 except for the definition of the matrices M and H. Hence,
o the original system (3.7) with y(t) as output can be transformed into an
«:?: equivalent system with ¢(t) as output as in the case for the STC.
;i;f Let the function ¢(t) be defined by

o
, T
E., o(t) = M(y(t) - y (t)) + H(u(t-k-1) - u(t-k-2)) . (3.10)
N

G

}g The equivalent transformed system is then given by

g
. -1 -1 -1 -1

a(q e(t) = (MB(q ) + (1-q )a(q ")H)u(t-k-1)

S

i -1 1. r

- + MC(qQ e(t) + MD - a(q My (t) . (3.11)
;@ Furthermore, as in the STC, by defining a new cost function I given by
B

oY I = E{p (tH+l)P(t+H) } , (3.12)
\gﬁ it is possible to obtain the Nash strategy (3.8) by considering the trans-
:gﬁ formed system (3.11) with the cost function (3.12) as a control problem
R with only one decision-maker. That is, instead of optim.zing J1 with
jjg respect to ui(c) for the i{-th decision-maker, every decision-maker can
;i%i determine the Nash strategy (3.8) by optimizing I with respect to u(t).
L Another interesting property of the solution (3.8) is that if the
- penalty on control in the Ji's is zero, and assuming the matrix M is non-

f,' singular, the resulting Nash strategy is equivalent to the MIMO minimum
.;, variance strategy developed for the STR in which there is only one
{‘;f decision-maker. Moreover, premultiplying (3.8) by M‘l when H is zero,
piv.
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we see that this Nash strategy 1s independent of the weighting matrices
Qi ({=1,2,...,N). Essentially, the game flavor of the problem will not
arise if every decision-maker does not penalize the control effort. Om
the other hand, even when there are penalties on controls, and if all the
Qi's and Ri's are identical for { = 1,2,...,N, the Nash strategy
collapses to the optimal strategy of the STC in Theorem 2.1. Situations
in which every controller has the same cost functional are analyzed in
the realm of team theory [48].

3.3.2 N-Person Self-Tuning Nash Equilibrium Strategy
Basically, the same approach utilized in the MIMO STC will be used

to deal with unknown parameters. However, further restrictions have to
be placed on each decision-maker. From this point on, we assume every
controller agrees to use the same estimation scheme and identical initial
conditions. These restrictions ensure every controller has the same
model for the system and rid us of the complications of multimodeling.
With these restrictions, each decision-maker is essentially a complete
STC by himself. That is, there are N identical STC doing identical
computations to compute the Nash equilibrium strategy. In other words,
in order to arrive at the Nash strategy for the system (3.7), every

decision-maker uses the following model for representation of the process
B(t) = Aq Dy(t-k-1) + Bq Hu(t-k-1) + B
-1, r
+ F(q )y (£) + e(t) (3.13)

with ¢(t) defined in (3.10) and

a(z) = do + dlz + ...+ dn_l.zﬂ-1 (3.14a)
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B(z) = By + Bz + ... + B, 2! (3.14b)

n
S J(z) = 30 + 31z + ... 3%2 g » Dg = degree c(z) (3.14c)

= =

(3.144d)

'u§ XX Hb

p x1

L " h

and €(t) is the error to be minimized in the least squares sense.

LA
RN

’
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s Eae A

The certainty equivalent Nash equilibrium strategy for the system

' .8
a.acs

P vy 5% Tyt e
LML AN

(3.13) is given by

2
«
atal

0 = B(q Hu(t) + &g Hye) + 3q Yy (eektl) + B (3.15)
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where ﬁ denotes the estimates of W. The parameters can be estimated

o using (2.40) and (2.41) with

[

2 T T, . T T, . T rt

3 M (t) = [y (®)y (t=-1)...u (t)u (t-1)...y (t+k+l)...1] (3.16)
) and the parameter matrix ©® defined by

t;‘.-

oy - -

oy

v %

-~ .

s % _

':§ @ = [eloc.ep] = . (3.17)
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}j _ The following recursions (for k = 0) are then carried out at each step
2\ !! of time:
2
-=‘. -—
"~ e
= i 8,(t) = 8, (t-1) + ;—?—t_—l)- N (e-1) [, (£) - ﬂf(t-l)ei(t-l)]
XU i
(3.18)
-
o o
i‘ i T
{ﬁ . ri(t-l) = ri(t-Z) + ni(t-l)ﬂi(t-l) s ri(O) =1. (3.19)
Qe
. 3.3.3 Convergence
Q éj Convergence of the estimated prediction 6* to the true prediction ¢*
;% i can be analyzed using Theorem 2.3. By defining the matrix M and H
| &
pt according to (3.9e) and (3.9f) respectively, we can apply Theorem 2.3 to
~ o,
N show convergence of the game problem, which is stated in the following
¢
Y theorem.,

g 2

Theorem 3.2. Consider the cost functions J1 (i =1,2,...,N) in

> (3.4) for the system (3.13) which is assumed to satisfy conditiomn i),

-l " . »
PRl R ST
kg
.

i1) and v) of Theorem 2.3 and the following conditions:

'»
4
Tl

% s iii) upper bounds for the order of all the scalar polynomials

, i appearing in {a(q’)), B + (1-¢"hHa@™Hmw, c@™H}

;‘ - are known;

5 é; iv) det(MB(z) + (l-z)a(z)H) $#0, |z| <1

- det C(z) # 0 , lz] <1

& with M and H as defined in (3.9).

% EQ If the Self-Tuning Nash algorithm (3.15)-(3.19) is applied to the

ﬁ .T system, then the system input-output will remain bounded and the prediction

: %f error for ¢{t) will tend to its global minimum with probability one.
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i' o 3.4 Simulation Example

)

.K§§ During recent years, optimal control theory has been widely used in
&

ot the field of economic analysis [7, 10, 31, 46, 55]. Optimal control theory

seems to provide an extremely versatile tool for the economist to deter-
mine tradeoffs between policies, economic stabilization policies, long
term investment policies and other functions alike. Hence, the Nash
strategy proposed here is applied to a rather simple minded quﬁrterly

economic model with two inputs and two outputs to illustrate the ability

‘;J; of the algorithm to stabilize the system. The two outputs are the con-

sumption expenditure C(t) and private investment I(t). The two inputs
;:; are government expenditure G(t) and money supply M(t). All variables are
5
P measured in constant 1958 dollars. Further details can be found in [15].
N In the United States, the formulation of the monetary policy is in the
SN
2 domain of the Federal Reserve System (FRS) while the formulation of the
-
}fﬁ fiscal policy is primarily in the hands of the Congress and the President
b (47]. There have been many instances during which the two "controllers"
q.‘zﬂ:?
=Y, hold different objectives. This certainly falls naturally into a game
;ﬁi framework. We will assume that the two controllers (FRS and the federal
e government) want to stabilize this system along certain target paths or
i%: growth patterns. However, they have different views on where the emphasis
A“.:JE
fc should be placed, which is manifested by having different cost functionals.
i Let J1 and J2 be the cost functions of the federal government (Congress
é;f and the President) and FRS respectively. The Ji's are given by
)
e r T r
- J; = E{ly(e+1) - y (e+1) 17, [y(e+1) - y (e41)]
Ko T
R + Lu(e) - ue-D IR, lu(t) - u(e-1)1}
%;
Pt
-t




>>>>>

where y(t) = [C(t) I(t) ]T, u(t) = [G(e) M(t)]T and y* is the desired output.

We assume yr(t) grows at an annual rate of 47 from yr(O) = [300 75]T.

The system is governed by
-1 -1
a(q y(t) = B(q Du(t-1) + Ce(t) +D

where the numerical values of a(z), B(z), C(z), and D are listed in
Appendix C. The weighting matrices and the covariance of the noise is
also included in Appendix C. We assume Bo is known during the simulation.
Simulation results indicate that the system can indeed be stabilized
along the targeted growth path. The input-output time responses of a
typical run are shown in Figures 3.1-3.4., PFigure 3.1b and Figure 3.2b
shows the output responses with expanded ordinate after the algorithm has
settled. We notice that there are extreme fluctuations during the start
up. In practical applications, these may not be permitted and can be
avoided by starting with initial estimates that yield a satisfactory

response. See [18], for instance, for practical considerations.
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Figure 3.1a. Time response of 4 for Nash game.
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ﬁ CHAPTER 4
{,‘ ! STOCHASTIC ADAPTIVE STACKELBERG GAMES
Eé ;? 4.1 Introduction
‘ij g? In this chapter, the self-tuning principle will be called upon to
:éi solve the stochastic adaptive Stackelberg game problem. The Stackelberg
:Q gi game, or the Leader-Follower (L-F) game, was first introduced in the con-
??‘ §§ text of a static economic problem with two decision-makers [52]. It has
:.::_‘ = been extended to dynamic cases in [49, 50, 51]. In the L-F game, one or
iﬁ és more group of decision-makers, which will be called the follower. For
:é . information than the other group, which is called the follower. For
%é EF instance, the leader knows the cost function of the follower but the
;5 ii follower may not know the leader's cost function. Equipped with the know-
;; ledge of the follower's cost function (thus the possible rational decision
g? 25 of the fcllower), the leader will perform his optimization taking into
A account the possible reaction of the follower. In the L-F game, the
E} ~ leader will announce his strategy first or act first. The follower then
33 E@ performs his optimization subject to his knowledge of the leader's action;
;ﬁ A that is, he is reacting to the leader's decision. Even though the
EE 52 computation for the leader may be more complicated than the Nash game
i; ~ case, he will do no worse, in terms of cost, and in general will do better
' ﬁ: using the L-F strategy rather than the Nash strategy. In general, however,
;§ ;3 nothing can be stated regarding the cost for the follower compared to his
3; B cost in the Nash game case, The L-F game framework is particularly
s P
f Ei appealing to optimization of hierarchical or multilevel systems where the

o follower or lower level controllers may have limited access to certain

f e . - ow e ey e
W e e e T A e vt ~ '._\:._\,'n,-..-.-‘.".*_s‘.-
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information or they may have limited computing capability. In an
economic system, for example, the government may be the leader over the
business community because of its vast data base. Another example is in
distributed control system in which the local process control computers
may have limited computing capacity compared to the central computer.
There are a host of variations in the L-F game., For instance, the
group of leader and/or follower may elect to use the Nash strategy
instead of conforming to one single objective among their respective
group. There may also be N groups of decision-makers with a hierarchial
structure such that the higher level controller is a leader to the
succeeding controller {13, 24]. 1In this report, we will concentrate on
2-Person Stackelberg games with DM

1 denoting the leader and DM2 denoting

the follower.

Definition 4.1. Let DMI’ the leader, choose control u, € U1 and DMZ’

the follower, choose control u, € U2 where U1 and U2 are the sets of

admissible controls, The cost function associated with DMi is Ji

(i = 1,2). Assume there exists a mapping T: U1 - UZ‘ For each control

u, chosen by DMI’ DM2 chooses u, = T(ul) such that

1
JZ(ul’T(ul)) < Jz(ul,uz) , ¥ uy € 02 . 4.1
The leader, DMl’ chooses uI such that
* %*
Jl(“l’T(ul)) < Jl(ul’T(“l)) , ¥ vy € U1 . 4.2)

*
The strategy pair (ul, u; = T(u:)) is called the Stackelberg equilibrium

strategy pair.




As in the Nash game problem, there are different solution concepts
!! to the L-F game. The solutions to open-loop, feedback, and closed-loop
- L-F games are in general different [21, 23, 44]. However, Lf we restrict

the cost functions of the decision-makers to single-stage, we reduce the

gi problem to a static one and circumvent the problem of different types of
- solution,
5 In Section 4.2, the L-F game problem will be formslated. The
o~ solution to the stochastic adaptive Stackelberg game problem is presented
5

%i e in Section 4.3. The same basic approach used in the analysis for the Nash
ég game problem is found to be quite appropriate. A simulation example of

an economic system is presented in Section 4.4,
4.2 éroblem Formulation
Consider a system given by an input-output description
a(@ Hy(e) = B(a"Hu(t-k-1) + c(@ ye(t) +D, k20  (4.3)

gg where a(z), B(z), C(z) and D are as defined in (3.7). The vector

. u(t) = [u'{(t)ug(t)]T with u, being the control of the leader and u, being
=% the control of the follower. The output y(t), input u(t), and noise

~ .
)
2

vidte

sequence {e(t)} are all of dimension p. {e(t)} is assumed to be an in-

dependently equally distributed zero mean random vector with finite co-

e
P
’

LA

variance. The cost function associated with the i-th decision-maker is

Lol |
H

s
Y

given by
3, = E{[y(tHeH) - y"(eet1) 1TQ [y (t+kel) - y™ (eHer) ]

+ Luee) - ue-DIR lue) - w(e-11}, 1= 1,2 (4.4)

e e W
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A T e T T T I b T T N N e




.......
........................

50

where yr is the desired output of the system and Q1 and Ri are symmetric
positive semidefinite matrices. The reason for the penalty of control
change between each time step is, as mentioned before, to avoid the
problem of calculating the reference control signal associated with non-

zero reference output.

4.3 Self-Tuning Leader-Follower Game

The L-F equilibrium strategy will first be derived for the system
assuming; all the parameters are known. Then an adaptive scheme similar
to the one used in the Nash game problem is presented to deal with unknown
parameters. For ease of derivation, we will limit the controls u1 and u,
to be scalar valued. That is, we will consider a two input twd output
system in this chapter. The results, however, can easily be extended to
vector valued controls.

4.3.1 Two-Person Leader-Follower Equilibrium Strategy

The derivation of the L-F equilibrium strategy from the necessary

conditions is basically the same as that of the STC except for certain

modifications., The result is summarized in the following theorem.

Theorem 4.1, Let L(i) represent the i-th column of a matrix L and let

(R),, denote the i,j-th entry of the matrix R. The Leader-Follower

ij
equilibrium strategy u*(t) = (u:(t)u;(t))T for the system (4.3) with cost

functions (4.4) is given by

ueq he Hy ey + g Hea Hea™h

+ (- Ha Hul*ee) + wrq hHe o

- 2@ HMyT (eHkHl) = 0
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373 with
i
O C(z) = adjoint C(z) (4.6a)
.
WO S(z) = det C(z) (4.6b)

I:i

. G(z) =G. +G,z+ ... +G .z°}1 (4.6¢)
.‘:: |::'-‘ 0 1 »e e n-l .
o - k
~:":E: F_".' F(Z) 1+ Flz + ... + sz (4.6‘1)
N
A = B T T -
eI (1) - (2)
Lo ) (kB kB )Y
,::? (Y M= = T (4.6e)
(2)
N “2J B0 Y
¥ F . - T T
- (1 _ (2)
AR B kaRy k1Ry
g & H= - T (4.6£)
]

' H r. (2
;‘ N where
Yo o] T
A TRAN ). (1)

il

oy and G(z), F(z) satisfy

e

TN

RNt C(z) = a(z)F(z) + 2" l6(z) . %.7)
1kl m

g a ¥u,

A Proof. See Appendix D.

o e

) E;:

. Cb It can readily be observed that the L-F strategy resembles the Nash
"' E" strategy (3.8) and STC strategy (2.22) in every aspect except for the
- definition of the matrices M and H. Another remark is that {f there has
""" e been no penalty on the control (H = 0) and assuming that M is non-singular,
‘-11 the L-F strategy will reduce to the minimum variance strategy for the STR

feed

D s
= .
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Ld
% and this resulting L-F strategy is independent of the weights Qi
g
i (1 =1,2), That is, the game aspects of the problem will not arise if
Eagl
%3 there is no penalty on the control action.
TN
=y Notice that the leader will have to solve (4.5) to obtain the L-F
b2 strategy. The follower, on the other hand, will just need to go through
SR * ¥
N part of (4.5) to obtain u, since the leader acts first and thus u, is
o known to the follower. Also, notice that the follower only needs to
L
. *
N5y know Mz and Hz in order to solve uy. The fact that the follower may not
;:% know the leader's cost function is again very transparent in this instance.
s
O,

To utilize the self-tuning approach, the original system is trans-

2 g

formed to an equivalent system as in the Nash game analysis., Let §(t) be

B30T ¢

b ¥
NN 4
dtas 4

i defined by
= 8(t) = M(y(t) - y'(t)) + H(u(t-k-1) - u(t-k-2)) . (4.8)
ﬁi The transformed system in ¢ becomes
75
" a@hew) = 0B@™H + (1-¢"Ha@ Hmu(e-k-1)
o -1 -1, T
7 +MC(q e(t) + MD - a(q IMy"(t) . (4.9)

If we define a cost function I given by

1 = E{gT (t+e+1)p(t+k+1) ] , (4.10)

it is possible, as in the Nash game case, to obtain the L-F equilibrium

L R
o"'.l".\.
B
ettty

strategy by considering the transformed system as a minimum variance

. ?‘:"

control problem with one decision-maker.

RS »
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4.3.2 Two-Person Self-Tuning Stackelberg Strategy

In order to deal with unknown parameters, we assume all the decision-
makers agree to use the same estimation scheme and identical initial
conditions. The parameter Bo is assumed to be known so that the matrix
M can be computed.

To control the process (4.3) with cost functions given by (4.4),

each decision-maker will use the following model as representation of the

system
8(t) = dq Hyy(t-k-1) + Bq Hu(t-k-1)
+ 3" Hyt(e) + B+ et) (4.11)

where d(z), A(z), J(z) and B are as defined in (3.14) and e(t) is the
error to be minimized in the least squares sense.

The certainty equivalent L-F strategy u is then given by
=1y * %, =1 D Pk 4 "
0 = B(q u (t) + d(q y(t) + F(q )y (t+etl) + & (4.12)

where i denotes the estimate for L. The parameters can be estimated using
stochastic approximation scheme given by (3.16)-(3.19).

To further appreciate the structure in the self-tuning L-F game, we
will go into some interesting properties of this adaptive procedure.
The leader in the game will have to estimate all the controller parameters
in order to compute u*. On the other hand, the follower, who acts after
the leader has acted, has a simpler estimation computation. Specifically,
the follower's estimation computation i{s part of the leader's computations.

Let us elaborate by further considering the case where v, and u, are

L e e e e e e e e e AT e o S e
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scalar-valued. For simplicity, assume D = O and yr = 0, Let d(z), &(z),

¢(t) be given by

0@ 2,
az) = (4.13a)
2212 8 (®)

-
5113 Bpa(2)
5(z) = (4.13b)
Dy1(2)  byy(2)

[, (&) | B
P(t) = 1 - Ml y(t) + 1 u(e-k-1) . (4.14)
%, () ¥, H,

From (4.14) ¢2(t) is given by

8,(t) = Myy(t) + Hyu(t-k-1) 6.15)

and Mz, HZ are functions of the follower's cost function only. The
follower, in fact, only requires ¢2 for his controller. Consider the

following equation which is part of (4.11)
-1 -1
By (E+etl) - €y (tHetl) = 2y, (q Ty, (L) + 855(q Dy,y(t)

+ by (@7 (8) + byy(a Huy(e)
(4.16)

The follower's optimal strategy u;, with u: available after the leader's

action, is given by

~

byp (@ Hup(e) = -ay (@ M)y (8 - dyp(@ Dy, (e

- By, @ Huy(e) . (4.17)

DR VIR S S SRRV N
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Hence, the follower will save some computational effort compared to the
leader.

4.3.3 Convergence

Convergence results for the L-F game problem is exactly the same as

stated in Theorem 3.2 except for the change in the definition of the

matrices M and H.

Theorem 4.2. Let the matrices M and H be defined by (4.6e) and
(4.6f) respectively and assume the conditions on the system in Theorem 3.2
are satisfied. If the self-tuning L-F strategy (4.12) is applied to the
system (4.3), then the system input-output will remain bounded and the
prediction error for ¢(t) will tend to its global minimum achievable by

any causal linear feedback with probability onme.

4.4 Simulation Study

The economic model presented in Section 3.4 is again used to study
the performance of the self-tuning strategy. In this case, we assume the
federal government (Congress and the President) to be the leader and the
FRS as the follower. The same Q1 and Ri used in the Nash game simulation

are used in this case.

Simulation results indicate that the algorithm can indeed stabilize
the system along the targeted 1% quarterly growth. The input-output time
responses of a typical run are shown in Figures 4.1-4.4, Figure 4.1b and
Figure 4.2b shows the output responses with expanded ordinate after the
algorithm has settled. Again, there are extreme fluctuations during the

start up period as the controller is trying to learn the characteristics
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~ CHAPTER 5 |
.;, DECENTRALIZED STOCHASTIC ADAPTIVE NASH GAMES 4
e 5.1 Introduction l
E; In this chapter, an explicit self-tuning method is utilized to

.éj develop an algorithm for systems with unknown parameters and multiple j
ff; controllers each, besides having a different objective, has a different %
*éz set of information about the system. This decentralized system framework i
%ﬁ is suitable for analyzing large scale interconnected systems in which the |
‘f communication and/or computational costs involved may prohibit the imple-
_E% mentation of a centralized control policy. Decentralized information
??E among decision-makers was first studied in the framework of static team

'j theory in [48] and was further extended in [11, 12, 34, 35, 36].

éé In this report, we will confine our analysis to Two-Person de-

‘ig centralized stochastic adaptive Nash games with an information structure

’; termed "one-step-delay sharing pattern" [57]. We will restrict the cost

%3 function of each decision-maker to a single-stage, thus, turning the

ﬁg dynamic situation into a static Nash game framework. In Section 5.2, the |
:\, formulation of the decentralized Nash game problem is presented. In :
zﬁ Section 5.3, we approach the known parameter problem by a straightforward

;é constraint on the form of the control policy as done similarly for the

;: single controller problem in (32, 37, 41]. 1In Section 5.4, another

$§ approach 1is used to tackle the known parameter decentralized game problem.
‘éﬁ Specifically, we extend results of static Nash games in (11, 12] to our
?ﬁ problem.
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A
o

To deal with the unknown parameter case, a recursive estimator is
& used to determine the system parameters explicitly. We force the
- certainty equivalence condition upon the system and substitute the true
té parameters by the estimates into the control law. The proposed algorithm
!? can be classified as an explicit self-tuning strategy as the systems
- parameters are estimated explicitly and then manipulated to determine the
ig optimal policy. Even though convergence for this procedure is not
= guaranteed, our simulation studies for an economic system, which is
= presented in Section 5.5, do show that the algorithm is capable of
E; stabilizing the system along a desired path asymptotically. Furthermore,

our simulation results indicate that the two different decentralized
e approaches will generate the same optimal policy hinting that the two

methods may actually be equivalent.

5.2 Problem Formulation

Consider a system with multiple decision-makers each has u,

g? (1 =1,2,...,N) as his control. The system is governed by

i

y(t+1) = a(q D)y(e) + B(q Myu(t) + e(t+l) + D (5.1)

or
DR
0

]

where u(t) is formed by stacking up all the ui(t). The dimension of the

i-th component of y, Vs is assumed to be of the same dimension as u

: L ?
é; The sequences {y(t)}, {u(t)}, {e(t)} are all of dimension p. The j
T disturbance sequence {e(t)} is an independent identically distributed zero
s mean while noise with finite convariance given by E{e(t)eT(t)} =W. B(z)
rz is a matrix polynomial and a(z) is a scalar polynomial as given by
g

-
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a(z) =ag+az+ ...+ anzn (5.2)

B(z) =By +Bjz + ... + ann ) (5.3)

The D in (5.1) is an p-dimensional offset vector with i-th row block Di’
which is also the same dimension as u,. A steady state decentralized Nash
equilibrium strategy for the system is to be sought. The cost function of

each decision-maker is given by

39 = By, (e4) - y[ e+ 17, [y, (e41) - yi(e+1)]

+ Lo (®) - 0 (-1 TR [u, (e) - o (e-1D1Y,
f=1,2,...,8 (5.4)

where Qi is symmetric positive semidefinite, R is symmetric positive
definite and yi is the desired value of the i-th output yy°

In our problem, at every step of time t, the i-th decision-maker is
assumed to have: 1) yi(t) and past outputs y(t-1),y(t-2),...; ii) past
inputs u(t-1),u(t-2),... as his information. This class of information
pattern is called "one-step-delay sharing pattern" [57]. The i-th decision-
maker attempts, under this information structure, to minimize (5.4) with
respect to ui(t) with the assumption that the other decision-makers use
the Nash equilibrium strategy as well. In this report, the number of
dceision-makers 1is limited to two. However, the algorithm can easily be
generated for more than two controllers once the methodology of the
solution is understood.

To facilitate our analysis, the cost functional (5.4) will be de-

composed to a form in which only the part that directly affects the




optimization result is kept. It can be shown by straightforward sub-
stitution that (5.4) can be written in the following form:

0

3, - E{u{(t)D

(t) + 2u{(t)n (t)

111 133
+ Zaoyf(t)qi(BO)iiui(t) + 2[§(q-1)yi(t)

+ 8@ Hug) + B, @Dy

. T (5.5)
+ Dy -y (t41)]7Q (By) b, (£)
+ 2[u§(t-1)Riui(t)]}
+ terms not involving u (t) , i,j = 1,2
i i)
with
T
Dyi ™ (BplyyQu(Bp)yy + Ry (5.6)
T
Dy = (By)yqQu(By)yy G.7

and (Bo)ij denotes the i,j-th block of the zero-th order element, BO’ of
the matrix polynomial B(z). sij(z) denotes the i,j-th block of B(z) with

(By);, taken out, that is,

iij(z) = Byy(2) - (Bp)yy - (5.8)
The scalar polynomial &(z) is similarly defined as

d(z) = a(z) - a; - (5.9)

We will let J1 denote the "active" part of Jg in (5.5), that is, the part

that involves ui(t). Hence, we have

Jg = Ji + terms not involving “L(t) . (5.10)
e e T e T L L e e T N
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5.3 Constrained Decentralized Nash Game

Consider a system governed by (5.1) in which each controller has a

cost function given by
J, = E{ul(t)D, ,u,(t) + 2us(t)D, u,(t)
{ 1 (E)Dyuy 1 (£)Dy yuy
+ 2a0y; (£)Q, (By),,u,(8) + 2[a(q My, (0)
+ 8@ Hu, ey + B, (¢ YHu, () (5.11)
+ 0, - yree+1) 1%, (8., u, (E)
1 Yy 1B 494

+ 2u§(t-1)Riui(t)} . L3 2 .

-1
¥ 3

Let the matrix Ci be defined by

and let the function x, be defined by
T . =, -1 ~ . -l
x; () = (B)(,Q,[a(a Dy (&) + B, (@ Du (8)
+8,.@H +D, - y,(t+1)]
£3@ DU (e) + Dy - yi(e+1)
+ Riui(t-l) , 1i=1,2, (5.13)

Notice that at time t, the value of xi(t) is known as it does not depend 1
on any future data,

Now we can rewrite Ji as
3, = E{ul(t)D, ,u, (t) + 2ur(t)D, .u,(t) + 2yr(t)C,u, (t)
i 1450044 1455144 LAY

2 . (5.14)

+ 2% (E)uy (8) ], L4
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The constrained decentralized Nash equilibrium strategy for the

system (5.1) with cost functional Ji in (5.14) is first presented in
Section 5.3.1 assuming all the system parameters are known. Then, the
certainty equivalence is invoked heuristically and a stochastic
approximation type estimation scheme is used to obtain estimates that
are substituted into the optimal policy in place of the true parameters.

5.3.1 Nash Game with Constrained Policy

. Let the control ui of the i-th decision-maker be of dimension m,,

i=1,2, Thus, the associated output measurement Yy for the i-th

i controller is also m, -dimensional. The i-th decision-maker tries to

minimize J1 with respect to u, which is of the form

ui(t) = Giyi(t) +8; » i=1,2 (5.15)
!; where G1 is a m, X m, matrix and 8y is a mi-dimensional vector. The
g\; constrained policy is stated in the following theorem.
F: Theorem 5.1. Let the characteristic root of a matrix A with maximum
absolute value be denoted by km(A), then the condition
1A il p:lp, )| <1 (5.16)
m' 11712722721 .
;2 is sufficient for the system (5.1) with cost functions (5.14) to admit a
¥ unique Nash solution. The gains Gi’ 8y of (5.15) satisfy the following
n}
-1 -1 - -1
£ Gy = DyyDyy ijji.Giwijwj}w 3911
3 i,‘.
- 1T -1 -1 -1 -
E! Diici + Diivijbjjcjwjiwii ’ 1,i : ;,2 (5.17)

.........
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g, +D.Ip, g, = -D;1[D,.G.¥,(t) + D, C.7.(t)
) ‘ 1 ¥ Dy4Ds484 11'0116¢Y4 135473

37:5':;.

‘o5 +CTy () +x, ()], 1,3 =1,2 (5.18)

WAL WY i i i

R 143

A0,

where ;1 denotes the expectation of Yy and Wi is the 1,j-th block of the

3

noise covariance matrix W.

Proof. See Appendix E.

-

;gé Notice that the gain Gi is independent on ay» BO’ Qi and Ri only.
zgg Hence, in the case when ao, Bo parameters are known, once Gi is determined,
‘i;' it does not require further computation.

;gg 5.3.2 Self-Tuning Constrained Decentralized Nash Game

E%E In order to obtain the Nash strategy for the system with unknowm

'ﬁyt parameters, we propose an ad hoc method of certainty equivalence. In this
j%ﬁ procedure we will assume ab and Bo are known to avoid possibilities of
f?§~ non~existence of solutions for (5.17). Furthermore, we will allow a unit
.f delay in the estimation scheme, that is, at time t, the system parameter
fégz estimates used for the control computation are based on past input-output
f%é data only. In addition, we assume each decision-maker uses the same

if" estimation scheme and initial conditions so that the problem of multi-

%ﬁ% modelling can be avoided.

dii The recursive procedure in [40], which i{s a stochastic approximation

type algorithm, can be used to estimate the system parameters explicitly.

Introduce the parameter matrix ® defined by
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0= [9192---°p] - (5.19)

where each di (1 =0,1,2,...,n) is a diagonal matrix. The following
recursions are carried out at each step of time to estimate ej,
j bd 1,2,..-’p=

- - X(e) - R -
ej(t) Oj(t 1) + rj(t) nj(t 1)[yj(t) Th(t 1)e(t-1)] (5.20)

T
rj(t) rj(t'l) + Y(t)[ﬂj(t-l)ﬂj(t-l) - rj(t-l)] ’ 5.21)

r,(0) =1

3

yCe-1) = [y§(c-1)...y}(:-n)urcc-l)...uT(c-n)1]T (5.22)

with ¥(t) being a decreasing sequence in t. Notice that the assumptions

a,, BO are known and will lead to the setting of 66 - aOI and Eh = Bo.

A block diagram of the closed-loop system is shown in Figure 5.1.
Convergence of the estimator will certainly lead to the convergence

of the Nash strategy. The condition for convergence for the filter

equations (5.20) and (5.21) has been investigated ([40]. It is shown that
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L Figure 5.1. Decentralized Nash game with constrained policy.



if u(t) is a white noise process, then the estimates will yield a correct
description of the input-output data. Conceivably, in a multivariable
system, there may be different sets of estimates that yield the same
description of the system. Hence, suitable identifiability condition of
the system is required to ensure proper convergence of the adaptive
scheme. Identifiability conditions for multivariable systems has been

investigated in [30, 55].

5.4 Extended Static Decentralized Nash Game

In this section, we will solve the known parameter case by applying
results in [11, 12] to our present problem. Then the estimation scheme
(5.18)-(5.22) is used to obtain explicitly the system parameters which
are then substituted into the optimal policy derived from the known para-
meter case.

Before utilizing the results in static Nash games, reformulation of
the problem into the appropriate setting is required. The cost function

in (5.11) is rewritten in the form

3 (£) + 22 (£)Cju, () },

(5.23)

" E{uf(:)niiuicc) + 2u§(c)n1juj

1,y = 1,2
1%

with 1)‘..1 as defined in (5.6) and (5.7) and
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C. = (5.24a)

e
=t
'O
—
s
B

A

(5.24b)

LM SN L2
(2]
[

XY where m, = dimension u, and
S i i

. x, (t)
554 x(t) = (5.25)
x,(t)

where

-

2k
aPeis o
.

]
-lli" .:’ )
2lasntls

o

%,(8) = Bp)y;Q lagy; (&) + 2@ Dy, () + By, (a7 Hu, ()

R
.

+ 8, e (0) + 0y - yi(e+) ] + Ryu 211y
(5.26)

""l’.d:

1,y =

1,2 .
143

PRy

N
[

Notice that in xi(t), the term (Bo)fiQiaoyi(t) is the current measurement

! that is available only to the i-th decision-maker at time t. The other
terms in x(t) are dependent on past input-output data that are available

to every decision-maker under the "one-step-delay sharing pattern'. Hence,

Pt
<

3

xi(t) can be considered as information that is privileged to the i-th

‘l

controller only.
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5.4.1 Extended Static Decentralized Nash Solution
Consider x(t) as the state vector in a state-space representation of

a system in which the i-th controller has zi(t) as his measurement. The

measurement zi(t) is given by

z,(t) = Hx(t) + v, (t) , 1=1,2 (5.27)
where
s D]
ey Ay
" = (1 011} my (5.28a)
H,=[o0 11} m, (5.28b)
\-yJ\—r-J
i T

and vi(t) is zero mean white noise with positive semidefinite covariances
Ti’ i =1,2, To utilize results in [12], the mean value of x(t), ;(t)
and the covariance of x(t), cov{x(t) ] are also required. We illustrate

here how X(t) and cov{x(t)} can be computed. At time t, past input-

output data are known, thus
x, (t) = Efx, (1)}
= BT, la7, (t) + at@ Dy, (&) + B,,(q Dy, (&)
0’11%1'%0%1 1% 1111 Y

+8,@ Huy(0) + D, - y{(e+))] + Ryu, (-1

(5.29)
i,j=1,2
143
where ;i(t) - E{yi(t)} and ;1 is given by
T T T A L G G e S
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¥4 = a@ Dy, e-1) + By, (@ D, (e-1)

-1
+ Bij(q )uj(t-l) + Di R i,i " ;.,2 . (5.30)
Let the cov{x(t)} = Q, then
Q = E{[x(t) - x(t)1lx(t) - x(t)1T}
or
3T Qv (0) - 7. | @ Qe () - 7]
0011%% ", ¥y 0°11%% (", 41
Q=E
(By) 2008072 () = ¥o(&)| | (Bp)3pQpa0(r,(e) - F,(t))
or
()T, Q.W..Q, (B,) (BT QW ,Q, (B.)
071117111V 0711 0711%1712%2%Y"0722
Q=a (5.31)
° B )L QW B T ow
(Bg) 22Q95,Q; (Bg) (Bg) 22QW92Q, (Bg) 55

where W, ., denotes the 1i,j-th block of the noise covariance matrix W and

ij
the fact that

E{(y, (8) = T, (N Gy(0) - T ) =7, (5.32)

b

has been used.

We are now ready to apply the result in (12, Theorem 2] to our game

problem.
Theorem 5.2. The condition (5.16) in Theorem 5.1,

-1 1
|Ag(Dy1DyaD9D5) | < 1
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is sufficient for the system (5.1) with cost functions (5.23) to admit a

unique Nash solution. The control law of each decision-maker is given by

ug (£) = G, X(t) + Fi(éi(t) -X(t)) , i=1,2 (5.33)
with
o fr _oply el qel el -1
Gi 1 DiiDiijiji] Du[Ci DiijjCj] ,
(5.34)
1,j = 1,2
i#]

x, (£) = E{x(£) |z, (t) }

= X(t) + QHL(E,QH; + T,) " (z,(t) - HE(®)) ,

1=1,2 (5.35)
and F1 is the unique solution to
Fl + PFlL =M (5.36)
where
p = -p lp  polp (5.37)
11712722721 '
R | T -1, T T -1
L QHI(HIQH1 + Tl) HIQHZ(HZQHZ + T2) H2 (5.38)
B | -1 -1 T T -1
and
- on-l T T -1 ) |
F2 -DZZDZIFIQHI(HIQH1 + Tl) Hl D22C2 . (5.40)

Proof. See proof of Theorem 2 in [12].
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There is a close resemblance of Theorems 5.1 and 5.2. In both cases,
the control ui(t) is affine in yi(t). Moreover, as in Theorem 5.1, the
gains for the information, F;, is dependent upon the system parameters

and B0 but not the rest of a(z) or B(z).

20
Notice that in the formulation of the problem in (5.27), white noise

sequence {vi(t)} have been introduced into the system. We may consider

this disturbance as measurement error of yi(:) and/or noise in transmitting

past input-output data. On the other hand, if no such noise is allowed

into the system (Ti = 0), it is, intuitively, reasonable to expect

Theorems 5.1 and 5.2 to generate the same optimal policy. In fact, the

presence of a positive definite Ti during the formulation stage is to

ensure that the matrices (HIQHi + Ti)’ i = 1,2 are non-singular. If we assume

Q is positive definite, by nature of the definition of Hi’ the problem of

singularity can be avoided.

5.4.2 Self-Tuning Extended Static Decentralized Nash Games

In order to avoid the possibility of non-existence of solutjons, we
assume the system parameters ao and BO are known while the rest of a(z),
B(z) and D are unknown. As in the previous approach, the system para-
meters are estimated recursively using equations (5.19)-(5.22) assuming
identical algorithm and initial conditions for all decision-makers. The
estimates are then substituted into the equations of Theorem 5.2 in place
of the true parameters to obtain the optimal strategy. Hence, convergence
of this Nash policy depends on the convergence of the estimates, as
commented previously in Section 5.3.2.

A block diagram of the closed-loop system is shown in Figure 5.2.

It is obvious that the two different approaches are almost identical
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Figure 5.2, Extended static decentralized Nash game.
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except for the noise sequences {vi(t)} (i = 1,2) that are introduced in

the second method.

5.5 Simulation Studies and Conclusion

The economic system presented in Section 3.4 is used to demonstrate
the performance of the algorithm. We assume the government who controls
ul(t) has the consumption expenditure yl(t) as its measurement and the
Federal Reserve System who controls uz(t) has the private investment
yz(t) as its measurement. Although this phenomenon may not be entirely
realistic, we can interpret this case as a situation in which the govern-
ment places a strong emphasis on the current consumption while the FRS
focuses its entire energy on ensuring the targeted path of current invest-

ment is followed. The cost functions weighting matrices are given by

Q= 5 R1 = 0.02

Q2 = 10 R, = 0.08 .

The same noise covariance used in previous simulations is used. The same
nominal yr in previous cases is used.

Simulation results indicate that both adaptive procedures can indeed
stabilize the system along the targeted growth path. The input-ocutput
time responses of a typical run using the extended static Nash game
approach (with '1'i = 0) are shown in Figures 5.3a-5.6a and the corresponding
trajectories using the constrained policy approach are shown alongside in
Figures 5,3b-5,6b. The two sets of input-output responses indicate the
two methods generate exactly the same optimal policy. Hence, it is reason-

able to assume the two methods are equivalent. There may be situations in
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............................................
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,.ﬂ o ! hold an edge over the theoretical by solid but cumbersome extended static
R
.._ - game approach. We can use this constrained approach with peace of mind
SRR
TS if we know there does exist a theoretical basis for the policy structure.
P~y F The input-output responses of the same run with all the parameters
_:4" b
Z’-’;’.% known are shown in Figures 5.7 and 5.8. The algorithms perform satis-
2% S
'_:.:Js ;:’ factorily when all the parameters are known, which is particularly evident
!
oo ., during the start up period. To compare the error in the optimal policy,
- " \':-‘-.
x . we let uk(t) denote the controls obtained with known parameters and un(t)
. o denote the policy obtained with unknown parameters. The quantity
. o u k n u u T
NN e(t) mu(t) ~u(t) = [el(t)ez(t)] is shown in Figure 5.9. We see
a [
TN L
2 v that the policy error eu(t) seems to be a zero mean quantity, which
. ' i indicates the algorithms are providing good controls even though the
::,-__- - parameter estimates in the simulation are far from converging.
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e ! CONCLUSION
=
%&i ;E In this report, steady-state solutions are obtained for the
- optimization of stochastic systems with unknown parameters and multiple
E decision-makers each having his own objective. The solutions obtained
ﬁ? for these systems, or games, have the advantage of simplicity and easy
if implementation and thus lend themselves to possible applications in a
5 &é variety of actual systems.
é - Two types of centralized stochastic adaptive games are considered:
: the Nash game problem and the Leader-F~llower game problem. The resulting
3% i; adaptive solutions for these games can be classified as those of the
SR
gé i implicit self-tuning type. It is established in this report that by a
s l! judicious transformation, these game solutions can be made to resemble
:g 3 closely the implicit self-tuning solution for the single-controller
ig < single-objective case, thus endowing them with the desirable property of
7 EE simple implementation. 1In addition, convergence of these game problems
ﬁ; :‘ is established utilizing this close resemblance.
:g, Ei In Chapter 5, we proposed two explicit self-tuning type methods for
ST decentralized stochastic adaptive Nash games under the '"one-step-delay
"§5 - information sharing pattern'. The first method is an ad hoc constraint
.%. :; on the policy form while the second one is an extension of static Nash
O game theory. Simulation results show that both methods generate identical
:%E g; optimal policy and indicate that the two algorithms may be equivalent.
-ii N Even though results from simulation are satisfactory, a theoretical basis
;g [i for convergence of the decentralized Nash game problem still needs to be
e

‘2 N established.
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All the methods used in this report to deal with unknown parameters
have been of the certainty equivalent types. Future research into this
area may include combination of the present approach with some other
methods that will take into account the inaccuracies of the estimates,
Another area related to the estimates is the use of different estimation

schemes by different controllers, thus leading to the problem of multi-

modeling.
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APPENDIX A

TRANSFORMATION OF SYSTEMS
Given a system governed by
A@ Dy = B(a Hu(t-k-1) + c(q e(t) + D (A.1)

where D is a constant offset vector and A(z), B(z), C(z) are matrix
polynomials. The vectors y(t), u(t), e(t) and D are all of the same
dimension. Let a(z) be the scalar polynomial formed by taking the

determinant of A(z) and let x(z) represent the adjoint of A(z). Hence,

-1

the inverse of A(z), A = is given by

1

a(z) A(z) . (A.2)

A-l(z) -

Premultiplying (A.1) by a(z)A" (z) ylelds
o@Dy = A@ He@ Huce-k-1) + KqHew Hece)
+ i@ Ho
or
a(@ Hye) = 8a"Hue-k-1) + @ Hece) + B (A.3)

where B(z) = A(z)B(z), C(z) = A(z)C(z) and D = A(1)D. The resulting

system (A.3) has a scalar polynomial operating on y(t).
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APPENDIX B

PROOF OF THEOREM 3.1
Consider the system governed by
a@ Hy(®) = B@ Huce-k-1) + ca™Hee) + D . (B.1)
The cost function J1 associated with the i-th controller {s given by
3, = E{ly(e+etl) - y" (e#er1) 1T [y (thietl) - y¥(etitl)]

+ [u(®) - ue-1)IR,[u(e) - ue-11}, (8.2)
1=1,2

From the proof in Theorem 2.1, we can transform (B.l) into the following

prediction model form

@ Hy e o) = e@he@ ey + raa hew e Huce)

+ r(a"Hew™Ho (8.3)
where
y (eHHL |t) = y(tHktl) - P(qQ D)e(tHerl) . (B.4)
Assuming the existence of 3;-?27 » We substitute y into (B.2) and set
a3, i
3::?:7 to zero to obtain

T
0 = B, Mq, (" (e#er1 ) - y¥(bHe1))

T
+ Ri(i)(u(t) -ut-1)) , 1=1,2,...,N. (B.5)
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Stacking up the N equations in (B.5), we have

0 = M(y"(t+ktl |£) - yT(t+eHl)) + Hu(t) - u(t-1)) (8.6)

YREESs.

i

- A 4

where M and H are defined in (3.9e) and (3.9f) respectively. Multiply

il

(B.6) by c(z) and combining the resulting equation with (B.3), we have
w(q hHe Hyw) + ir@ He s + a-aHee Haduce)

' -1 -1 - el r

+ MF(q )C(q )D - c(q My (t+k+l) =0

“.:; as stated in the theoren.
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ey APPENDIX C
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ECONOMIC MODEL

B t} The economic model used for the simulation study is taken from [15,
\Y
- pP. 272]. It is given in the following form
6
;ﬁ e c, = 0.9266Ct_1 - 0‘°2°3It-1 + 0.319OGt
&
+ 0.4206M_ - 63.2386 (C.1)
. t
V] )
i I 0.15 7Ct_1 + 0.3806It_1 - 0'0735Gt
* :q ‘:;
. + 1.538!{t - 210.8994 (C.2)
2
é 2 where Ct denotes consumption expenditures, It is private investment

sxpenditure, Gt is government expenditure and Mi is the money supply.

Let yl(t) - ct, yz(t) - It’ ul(t-l) = Gt’ and uz(t-l) = Mt' We

9 .
-t aaT

':

-

»
pL

2

assume the current Gt and Hc are the result of, and equal to, the desired

levels that were specified in the previous time step, thus the time lag

X

in the definition of u, and u, (46]. The resulting model in terms of y

and u is given in the following matrix polynomial form

K2
EE&R

- g 0.9266 -0.0203 0.3190 0.4206

. E 1+ Ly - u(t-1)
o 0.1527  0.3806 -0.0735 1.538

3 63.2386

% Eg - (€.3)
& - 210,899

Using the transformation technique given in Appendix A, we have the

transformed systeam

€8 &= B
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1 -2 0.3190  0.4206
(1 - 1.3072q"" + 0.3596q “)y(t) =

-0.0735 1.5380

-0.1199 -0.1913 1 -34.8887
+ q u(t-1) + (C.4)
0.1168 -1.3609 -25.1366
or
-1 -1
a(q y(t) = B(q Hu(t-1) +D . (C.5)

For simulation, we assume the system is perturbed by zero mean white noise

e(t), that is,
a(q Hy(t) = (g Hu(e-1) + D + e(t) (C.6)

with

54 12

E{e(t)e’(t) } =
12 26 .

The weighting matrices for simulation in Chapters 3 and 4 are

- 1 - -
5 0 0.2 0
Q - R -
Ll 5] ° 1 0 0.4
. p e -
—— r E—
2 o 0.1 0
Q = R - .
2 o 8|’ 2 0 0.5

All input-output variables are in billions of dollars and each time

step t is one quarter.
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APPENDIX D
PROOF OF THEOREM 4.1

Consider the system
-1 -1 -1
a(q )y(t) = B(q )u(t-k-1) + C(q e(t) +D . (D.1)
The cost function J { associated with the ith controller 1is
3, = B{ly(cHetl) - y"(e#er1) T, [y (esietl) - y" (etiot1)]

+ [uce) - we-nIR Lu(e) - ue-1IY, (0.2)
i=1,2

From proof in Theorem 2.1, it is possible to arrive at the following
prediction model form of (D.l),

c@ Hy e le) = 6a™Hea Hy e + FaHea s Huce)
+ 2 e HD (D.3)
where

y (tHeHL [t) = y(tektl) - F(q D)e(edrl) . (D.4)

The y* 1s substituted into the cost function (D.2) and the necessary
coundition for minimum is then derived as follows.

Follower. J, is the cost function associated with the follower.

The necessary condition for the follower is
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3y

. du,y (t) =0

T
3% - 30(2)Q2[y*(c+k+1|:) - yF(t4k41) ]

T
+ B, P Lu(e) - u(e-1)] (0.5)
¢ae = M,y (tHetl |£) - yT(eHe)] + Bylu(e) - u(e-1)] . (D.6)

v Leader. J1 is the cost function associated with the leader. The
2t leader optimizes Jl taking into consideration the possible reaction of the
N follower., Thus, he will append the follower's optimization equation to

.- that of his, that is, he will minimize, with respect to u, and u,, a

cost function J given by

-,

P LU,
G530 Y s
jo 5 B L

1
1

3
J=J +AT 2

1 t du,(t) (0.7

>% %)
EA AL

»
S

where kt is a Lagrange multiplier. The necessary conditions of minimum

‘,‘

A A"

s
2

J
Bui(t)

for the leader 1is =0, for 1 = 1,2, For simplicity of derivation,

. we will assume u, and u, to be scalar valued. Hence, we have

o L =0
3u,(0)

T T
- Bo(l)ql[y*(t.;.k.p]_ ‘t) - yr(t+k+1)] + kt(Bo(Z)QzB(()l) + (RZ)IZ)

T
+ Rl(l)[u(t) - u(t-1)] (D. 8)

) and
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aJ

—— ()
auz(t)

T T
= B, P, [y (st |6) - y¥(esis1) ] + A By DB + ®,),)

T
+ Rl(z)[u(t) - ue-1)] . (D.9)

ol "
D
9%
Y

el Equations (D.6), (D.8), and (D.9) yield

- My (t+k+l &) - y"(e+k+1)] + Hlu(t) - u(t-1)] =0 (D.10)
:‘3! 2

,_\5. Ly where M and H are as defined in (4.6e) and (4.6f) respectively.

:" Combining (D.3) and (D.10), we have

. u6(a M@ Dy (o) + F@ Hea Hea ™ + a-a"Ha Haduce)
X 1, -l =, =li.r
o + MF(q )C(q ")D - c(q )My (t+k+l) = 0

;:":;

b5 as given in (4.5) of Theorem 4.1.
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APPENDIX E

;_ PROOF OF THEOREM 5.1

PN

: Consider the system governed by (5.1)

b y(t+1) = a(q D)y(t) + B(q M)u(t) + e(t+l) + D (E.1)
A with the cost functions (5.14)

N 3, = E{ul(t)D, ,u, (t) + 2ul(t)D, u,(t) + 2yi(t)C,u, (t)

N i 1459914% 14579%3%4 YRy

N +a(Du ()}, L=1,2. (E.2)
-

1 The policy u, {s constrained to be of the form

ug(t) = Gy, (t) + 8 . (E.3)
.“ Without loss of generality, let us consider J,. Substituting u, in (E.3)
_ into J yields

- o et T T T T, . .T

3 I = Elyj(€)6;D;,G,y) (t) + §)Dy,8) + 2y, (£)GD);8,

X T, T T

2 + 2[y, ()G D, ,6,¥, (t) + y,(t)G,D;,8,
L

2 T T

7 + B1D16,%,(8) + 8101,8,] + 20y (©1C)6,y, ()

: T T T

.

. + y,(£)C, 8, + x,(t)G,y, (t) + x,(t)g,]} . (E.4)
-~

3 Denote

X T

5 Ely (e)ys(e)} = B (e) (E.5)
L .

] Ely, (6)} = 3,(0) . (E.6)
Y]

1

)

¥
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Then, taking expectation of the terms in (E.4), we have

i
'-,; || J T

_ . T T, T

& J, = trace[G;D,,G,P,,(t) + g,D,,8, + 2y,(t)G D, &,
0

b T =T, . .T T =

e + 267D, ,G,P, (€) + 23] (£)G]D, ,8, + 28D, ,G,¥, ()

WL W &T,

S
s T =T
i o + 231D1232 + zclclru(t) + 2y1(t)Clgl
R | + 2x1(£)G. Y, (£) + 2x2(t)g, ] (E.7)
Bl 11896, 11684 - .
;.; % The following formulae are then used to evaluate the necessary conditions
) -
2 for minimum %;J_ = 0 and %‘I— = 0:
x a 1 8
; =)
,;:.' o - T
-.;2_ ,k. 32 tr(Nz] = N
2 R T] w
N ﬂ 2 tr(Nzl] = N
o 3 T.T
L 3z trlveL] = NL
B Z
'_,. hutg
g E’ %z' tr(zT1zn] = LT2nT + 12w .
44 -
. r Hence, we have
& )
o ...: oJ
- 0= —1
T 1
o T . .T -T
7 = D[;G,P};(t) + D, G P, (E) + 2D ;8,¥;(E) + 2D ,G,P,, (t)
R e
& =T T,T =T
I + 2D, ,8,¥,(t) + 2C P}, (t) + le(t)yl(r.)
! .."
al ‘ or
8 o 0 = D, G.P, (t) + D, g.7o(t) + D, ,G,P. . (t) + D 0gryr(t)
- 1°1' 11 118171 12221 128271
h]
hes T =T
b a + clpu(:) + xl(c)yl(t) (E.8)
c’g 7ol
]

a4V T VY

@G
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T - -
= ZDu + znnclyl(t) + 2D12G2y2(t) + 21)1232

y -
+ 2C)y, (£) + 2x,(t)

or
0= D118y * Py36)71(8) + D58595(8) + Dyp8y

+ cf;l(:) +x,(t) . (E.9)

aJ. aJ

Similarly, from =2 = 0 and —2 = 0 we obtain
%, 38,

. - -T
0 = DyaGyPpe(t) + Dyy8yyy(t) + Dy GyP)o(t) + Dy 8,5,(t)

+ Cngz(t) + xzct);;-'(t) (E. 10)

0 = Dy8, + DypGyy,(t) + Dyy6,yy (t) + Dy 8y

+ cg‘;z(:) + xy(8) . (E.11)

Since y(t) and E{y(t)yr(t)} are required to solve for G,, g, (i = 1,2)
in (E.8)-(E.1ll), we show how these terms are computed.

At time t, past u,y are known, then
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..;4 1.4
& -1 -1
.‘ F E{yi(t)} - E{a(q )Yi(t‘l) + Bii(q )lli(t°1)
5:3 -1
e +B,,(@7Duy(e-1) + e(t) + D}
v [
‘:( " -1 -1
‘ = a(q )y (t-1) +B,,(q u,(t-1)
-
N
f’} + Bi (q'l)u (t-1) +D . (E.12)
.'.‘-' - j j
o
- Let
AR P ,(E) B ,(E)
g ” P(t) = - E{y(t)yT(t)} = variance{y(t)} .

Po1(8) Byy(t)

2
| BR4

Since variance {y(t)} = covariance{y(t)} + ;(t);r(t), thus

BN

¥ B(t) = E{(y(t) - TN W) - FENTY + F(e)F ()

f% . = Efe(t)er(t)} + Y(E)F' (L)

Ay =W+ y(t)y'(t) . (E.13)
.'é 2 Postmultiplying (E.9) by the term ;‘f(c) and subtracting the resulting
":‘:: @ equation from (E.8) yields

= ;“ D,16,(B};(8) = ¥,(0)F](8)] + D ,6, (B, (£) = F,(0)F} ()]

': :‘:: - .c{(Pll(t) - ;1(t);{(t))

or

D;1G W11 + DyaGoWy; = - cv

™11 (E.14)

Similarly, if ;’g(t) is postmultiplied to (E.ll) and then subtracted from

g (E.10), the following is obtained
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Dy 6yW g + DygCyWy, = 'cngz . (E.15)

After some manipulations with (E.14) and (E.15), we have

£

YT

G1 - LLGLNL = S1 , 1 =1,2 (E.16)

with

= o lp, o7l , 1,

i ii7i3 33734 2 (E-17)

. T
(LS L

[ L
h S
e =t

el

-w, Wl wl ,» 1,3 ,2 (E.18)
13733731711 i

T
> P&

e
- 0
Cade et

Iy

> v
st h
«

€. a0 sens

RS W, OSSR | -1
Sy = ~DyC; + DyyDy Dy iCH, Wy 1,1 2 (E.19)

=1

2

which is stated in (5.17) of Theorem 5.1. After the Gi's are determined,

8, and g, can be solved i:ivw (E,9) and (E.1l) respectively

A

8 + D;inijsj = 'Dlitniici;i(t) + Dijcj;ﬁ(t)

LGOS

22 (E.20)

ol

AACRIACIIENE, ;

P

Y

as stated in (5.18) of Theorem 5.1. Sufficient conditions for existence

ro-ary

Eoo e G- E

- of solution to (E.16) is discussed in the proof of Theorem 3 in [11] and
%,

; Corollary 1.1 in [12] and is stated in (5.16).
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